Tuesday, May 6, 2008

In Stitches

After doing the back-stitching on a few of the letters in this counted cross stitch pattern, I wondered if there would always be an even amount of stitches in the outline of a block shape.

Problem:

Define a "block shape" as any shape that can be created by coloring in squares on graph paper. Each square in a multi-square block shape must share at least one side with another square in that shape. Call the length of a square on the graph paper one unit. Prove or disprove: the perimeter of a block shape will always be an even number of units.

  • Base case: consider a one-square block shape. Its perimeter is 4 units - one for each side. Since 4 is even, the proposition holds for the base case.

  • Inductive hypothesis: assume that a block shape consisting of n squares has an even perimeter.

  • Deductive step: What happens when I add a square to the n-block shape?

    • If the new square is touching exactly one other square, then I am taking away 1 unit from the perimeter and adding 3 units. That's a net gain of 2 units, so the perimeter remains even.

    • If the new square is touching exactly two other squares, I am taking away 2 units and adding 2 units to the perimeter. The net change is 0, so the perimeter remains even.

    • If the new square is touching exactly three other squares, I am reducing the perimeter by 3 units and adding 1. The net loss is 2 units, so the perimeter remains even.

    • If the new square is touching exactly four other squares, I am taking away 4 units from the perimeter and adding none. The perimeter remains even.

    In each possible case, the perimeter of the (n+1)-block shape remains even.
Therefore, by the Principle of Mathematical Induction, the perimeter of a block shape will always be even.

Solution...

Tuesday, April 29, 2008

S.A.Tricky

Here's an S.A.T. problem that stumped my students and me (for a little while).

Problem:

a - b = 10
a2 - b2 = 50

Find b.



Edit: The original post contained a mistake. (10 + b)2 = 100 + 20b + b2, not 100 + 2b + b2.

Solution...

Thursday, April 24, 2008

IDEAs

Here's another S.A.T. problem.

Problem:

In the correctly worked addition problem to the left, A, B, D, E, I, and S each represent a different digit. What is the smallest possible value of D?

Solution...

Thursday, April 10, 2008

Prime Factorization

This problem comes form Project Euler. I solved it with a computer program written in C++.

Problem:

What is the largest prime factor of the number 600851475143?

Solution...

Monday, March 31, 2008

Atari Space

My friend Justin was reminiscing about some Atari-aged video games: Subspace/Continuum. The problem they inspired reminds me more of Asteroids.

Problem:

A turret in a video game can rotate but not change location. It shoots bullets that travel with a constant velocity VB. An asteroid travels at a constant velocity VA. Where should the turret aim to hit the asteroid?

Solution...

Thursday, March 27, 2008

S.A.T. Inequalities

This one comes right out of the S.A.T.s.

Problem:

Each of the following inequalities is true for some values of x EXCEPT

Solution...

Wednesday, March 19, 2008

Squares of Triangles

Pythagoras was a Greek philosopher and mathematician who lived in the sixth century B.C.E. He acquired a following in his time, and there was a cult built up around him in which he was worshiped as a demi god1. Today, he is most well known for his contribution to Euclidian geometry: the Pythagorean Theorem. Today's challenge is to prove the Pythagorean Theorem.

Problem:

Given any right triangle ABC, prove A2 + B2 = C2 using only simple geometric formulas. (No trigonometric functions allowed).

Solution...

Weighing in on Icy Roads

Problem:

Does increasing your vehicle's mass increase your maneuverability on icy roads? Assume the vehicle and all contents are treated as a point mass.

Solution...

Tuesday, March 18, 2008

Welcome to J-Function Problem Solving

Here's the deal: you send me math or science problems, and I'll post solutions up to as often as one per day. I'll solve problems from any of the subject areas I tutor and also from logic or philosophy. Ask away.