After doing the back-stitching on a few of the letters in this counted cross stitch pattern, I wondered if there would always be an even amount of stitches in the outline of a block shape.
Problem:
Define a "block shape" as any shape that can be created by coloring in squares on graph paper. Each square in a multi-square block shape must share at least one side with another square in that shape. Call the length of a square on the graph paper one unit. Prove or disprove: the perimeter of a block shape will always be an even number of units.
Solution:
I will prove that the perimeter is always an even number of units using the Principle of Mathematical Induction.
Therefore, by the Principle of Mathematical Induction, the perimeter of a block shape will always be even. If the new square is touching exactly one other square, then I am taking away 1 unit from the perimeter and adding 3 units. That's a net gain of 2 units, so the perimeter remains even.
If the new square is touching exactly two other squares, I am taking away 2 units and adding 2 units to the perimeter. The net change is 0, so the perimeter remains even.
If the new square is touching exactly three other squares, I am reducing the perimeter by 3 units and adding 1. The net loss is 2 units, so the perimeter remains even.
If the new square is touching exactly four other squares, I am taking away 4 units from the perimeter and adding none. The perimeter remains even.
In each possible case, the perimeter of the (n+1)-block shape remains even.
Tuesday, May 6, 2008
In Stitches
Solved by
J Function
at
12:14 PM
Subscribe to:
Post Comments (Atom)
2 comments:
I figured this one out pretty much from the get-go, at least after having been swindled by the wording. Keep coming up with these great problems, dear!
how much more time before the next one ???
Post a Comment